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Agricultural soil properties exhibit variation over field plot scales that can 

ultimately effect the yield. This study performs multiple spatial pattern analyses in order 

to design spatially dependent regression models to better understand the interaction 

between these soil properties. The Cation Exchange Capacity (CEC) and Calcium-

Magnesium Ratio (CaMgR) are analyzed with respect to Calcium, Magnesium, and soil 

moisture values. The CEC and CaMgR are then used to determine impact on the yield 

values present for the field. Results of this study show a significant measure of model 

parsimony (0.979) for the Geographically Weighted Regression (GWR) model of the 

CEC with free Ca, Mg, and soil moisture as explanatory variables. The model for CaMgR 

using the same explanatory variables has a much lower measure of model fit. The yield 

model using the CEC and CaMgR as explanatory variables is also low, which is 

representative of the underlying processes also impacting yield. 
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INTRODUCTION 

The global population is slated to increase drastically by the year 2050 requiring 

agricultural yield and crop production to meet the increase in food demand resulting from 

future growth (Dawson 2014). While crop production is still increasing, the percentage of 

crop yield increase is decaying at a rate that will diminish over time into static or reduced 

production. In order to address potential crop optimization strategies, current research has 

developed crop modeling parameters (Mendelsohn 2007, Drewniak 2012), such as the 

Community Land Model and multiple crop failure scenarios. Many of these models 

address different aspects of crop production, but complex models are needed to explain 

complex processes. As a quickly evolving scientific field, Geospatial Information 

Systems (GIS) are well-suited for the spatial and statistical analyses that are necessary to 

understand the effects of multiple variables on crop yield. More simplistic crop 

production models address singular variables such as temperature, or atmospheric impact. 

These variables modeled individually produce skewed results that do not account for the 

presence of multiple causative factors. This study will attempt to use GIS to model 

regression equations including multiple variables that act upon crop production. 

1.1 Importance of Study 

Increasing global population and the future acceleration of that increase 

necessitate advancements in food production. Currently research has been focused on 
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developing chemical applications and increasingly complex crop simulation models. 

Plant growth is a complex process and simulating entire field plots worth of growth 

requires consideration of a large number of variables. Complex processes occur within 

agricultural soils to a degree that including all of the necessary factors in a single model 

is extremely difficult. The large number of variables necessary for crop modeling can 

result in reduced ability to account for minute changes within those variables and lowers 

overall model precision. Focusing on specific target variables for these models can 

maintain precision while still allowing for the inclusion of multiple variables in the 

analysis. The target variables for this study will be the Cation Exchange Capacity (CEC), 

and the Calcium - Magnesium Ratio (CaMgR), soil moisture content, and elevation. 

Other variables included for this study will be the elemental base percentages comprising 

the CEC (Hydrogen, Potassium, Calcium, and Magnesium), and individual measures of 

Calcium and Magnesium. Focusing primarily on the soil characteristics will develop 

values for these characteristics that can in turn be used within more complex models in 

place of less precise existing soil values. Alternatively, if this modeling is implemented at 

a field level in a precision agricultural design, the optimization of soil characteristics 

could be used to inform management decisions. 

1.2 Study Purpose 

The primary purpose of this study is to model spatial relationships of CEC and 

CaMgR in order to better understand potential agricultural soil optimization. Projected 

global population increases necessitate agricultural advances in order to sustain food 

sources. The CEC will be analyzed using regression and interpolation methods in order to 

determine elemental composition of the CEC values, as well as the impacts of soil 
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moisture and elevation. Calcium, Magnesium, soil moisture, and elevation will be used to 

develop understanding of the CaMgR and model these values for the target field. The 

CEC and CaMgR values will then be analyzed using multivariate statistics in order to 

determine the relationship between the two. That relationship will then be measured in 

terms of impact on crop yield within the target field. This study has been designed to 

address the following questions: 

1. Can the relationship between CEC and specific independent variables be 

defined? 

2. Could spatial regression techniques be used to define how Ca, Mg, and 

additional explanatory variables act upon the CaMgR? 

3. How do the values for CEC and CaMgR interact on an individual field basis 

and how does this interaction impact yield?  

Answering these initial questions will allow for modification of existing field 

methods in order to maximize potential yield. Gaining a better understanding of soil 

processes and the relationships between soil characteristics would necessitate changes in 

agricultural management decisions. Soil chemical applications and soil treatment 

methods could be more effectively used to develop optimized ratios between the CEC 

and free Ca and Mg. There is potential for the soil moisture and elevation to alter the 

effects of the CEC and CaMgR on the yield which must also be addressed in this study. 

The largest potential impact of the soil moisture and elevation at the field level would be 

potential for water to leach nutrients from the soil. If these relationships can be defined, 

they could benefit knowledge of interacting soil processes, which could then in turn be 

used to provide better management of agricultural field plots.  
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As a global purpose for this study, future research must address the growing 

agricultural needs of an ever expanding population. The goal of providing adequate 

agricultural crop yields to meet increasing demand necessitates improving current crop 

growth techniques. One way of accomplishing this is by optimizing known soil properties 

that affect the nutrients available to crop plants. The maintenance of nutrients in the soil 

and defining an optimal ratio for these nutrients could potentially boost yield, or provide 

further knowledge of how they might be detrimental to yield if not optimal. A localized 

goal for this study is to increase understanding of soil properties in light of precision 

agricultural practices.  Chemically analyzed soil samples provide Cation Exchange 

Capacity and Calcium-Magnesium Ratio values for each sampled feature, but these 

values are difficult to interpret. Optimal ranges for such values exist, but the true impact 

on yield of different values can vary across the spatial range of a single field plot. 

Identifying how these processes interact with each other as well as yield could inform 

management and administrative decisions for precision agriculture at a field level. 
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LITERATURE REVIEW 

2.1 Soil Moisture 

Soil moisture, CEC, CaMgR, and topographical characteristics all vary within 

individual field plots (Anderson-Cook 2002). Soil moisture plays an important role in 

plant growth (Volkmar 1997) with many plant processes depending on water for basic 

metabolic functions and development. Preexisting water stress can significantly reduce 

the ability of the plant to respond to additional stress factors which can ultimately result 

in greater vulnerability. Green (2004) used a statistical crop model with weighting to 

identify the topographical moisture index as accounting for 38-48% of variance for 

winter wheat yield. This amount of variance explaining nearly half of the crop production 

data dictates that one of the main variables in geospatial regression analysis should be the 

soil moisture content. Application of water to the field plot can also effect the soil 

moisture content (Marques Da Silva 2008) which also functions as an explanatory factor 

in spatial variance on crop yield. Climate change could potentially be detrimental to crop 

growth for a range of reasons (Hu 2003), and the addition of more soil moisture can 

result in transportation or leeching of soil minerals. 

2.2 Cation Exchange Capacity 

Ionic charge of the soil and the quantified variable of CEC within the soil samples 

is another variable that influences crop yield. In precision agriculture, the CEC is often 
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used to measure overall soil salinity as well as other physic-chemical properties (Corwin 

2005). Soil type can be defined through the soil electrical charge (Kühn 2008) and in turn 

this can be useful when establishing the amount of spatial autocorrelation present within 

soil sample data. As with the soil mineral content, the CEC is highly variable and 

differentiation is present at a field plot basis. This differentiation is observable to a degree 

in recorded soil samples which can be useful for discerning miniscule changes in soil 

types within the same field plot. Officer (2004) used fields in Illinois and Missouri within 

a principle component analysis to correct soil maps. The principle component analysis 

resulted in establishing concave elevation characteristics associated with soil electrical 

charge that had a large impact on soil fertility. Roughly the lower areas in the fields were 

collecting greater ionic charge due to the leeching of nutrients in the soil and the 

transportation of soil nutrients by water. This leeching of soil nutrients can be attributed 

to the CEC as a measure of the soil’s ability to maintain nutrients. CEC is currently 

viewed with a generalized optimal range; low CEC results in the soil being unable to 

maintain nutrients long enough for adequate plant absorption, and too high of a CEC 

attributes to nutrients being maintained too efficiently for the plants to be able to uptake. 

2.3 Calcium Magnesium Ratio 

Soil mineral content such as the CaMg ratio has been shown to directly affect 

plant growth and development. The mineral content of the soil is highly variable and is 

known to vary within the same field plot as well as within different soil types. Soil maps 

are available for many areas such as the location of this study, but there are often large 

amounts of error within soil maps. This can be alleviated by using soil prediction 

algorithms (Moore 1993) which primarily identify the soil but also to establish the 
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validity of the soil samples taken on site representing ground reference data. By modeling 

crop yield and soil mineral content (Vrindts 2003, Villamil 2012) the correlation 

coefficient of the variable can be used to establish management plans for field plots. 

There have been multiple long-term field studies (Olness 2001, 2002) which have 

addressed maize and soybean mineral sensitivities as measured by genetic variations 

within species. Nitrogen and potassium have both been established as influential growth 

minerals for plants, but the relationship between crop yield and CaMg ratio are more 

difficult to define. 

2.4 Elevation 

Errors identified in DEMs (Aziz 2008, Holmes 2000) necessitate correctional 

algorithms in order to use those models for agricultural research. Even when using 10-m 

DEMs (Green 2007) the amount of associated error is too large for agricultural terrain 

modeling. Field plots represent a difficult surface to model due to the precision and 

accuracy necessary to create functioning topographical models. Hydrological function 

models are directly dependent upon correct fit and representation of the elevation model 

when formulated for field plots. Kravchenko (2000) used a weighted model to identify 

physical factors such as slope and elevation, and the degree that they effect crop 

production. This study established topography as accounting for 20% of the statistical 

variance for crop production in the target fields used which indicated that a large amount 

of data variation could be attributable to the errors associated with DEMs. Roughly half 

of the variability of soil properties can be attributed to elevation, slope, and moisture 

changes within the soil over the length of a field plot (Moore 1993). In precision 

agriculture, often Real-Time Kinetic (RTK) technology and sensors are fitted to the 
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harvesting equipment which allows collection of ground reference data. Soil topography 

measurements vary depending on data collection methods (Schmidt 2003) with RTK 

being more suitable for agricultural field use. By using the more precise RTK elevation 

data collected during crop harvesting periods, the error associated with DEMs and 

agricultural implementation can be circumvented. Each harvested cell of the field, which 

encompasses a space roughly the size of the harvester, is assigned an elevation value as 

measured by the sensor attached to the harvester. The sensor attached to the harvester 

also collects raw harvest data and base soil moisture readings for each of the cells. 

2.5 Spatial Analysis Methods 

Spatial analysis of soil properties has been accomplished using a multitude of 

different methods. Semivariogram analysis is one of the most common and has revealed 

normal trends and variabilities within the soil properties of a regionalized area such as a 

field plot (Trangmar 1985). These trends within the data can be measured using the 

results of semivariograms and the extent of spatial dependence can be established. These 

spatial dependencies are commonly also used to show dissimilarity in terms of distance 

for sample points (Goovaerts 1998). Interpolation techniques such as kriging are typically 

used in conjunction with variogram analyses in order to estimate values for areas not 

sampled and address potential directionality. No interpolation methods will be used for 

this study meaning spatial pattern analysis using various hot spot and clustering analyses 

will be used.  

Ordinary-Least Squares (OLS) regression will be used for the initial exploratory 

regression and variable fitting of the model. The main difference between the OLS 

regression and the GWR methods are in terms of spatial distribution and dependence. 
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Spatial heterogeneity of the variables must be corrected using algorithms and weighted 

matrices (Charlton 2009). The required corrections for OLS regressions using spatial data 

necessitate using a different regression technique. The GWR method is designed to 

incorporate the spatial distances between the points. Spatial changes from nearest 

neighbor points are used when estimating the dependent variable values. These distances 

influence the estimations using varying amounts of spatial autocorrelation. 
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METHODS 

3.1 Study Area 

The location of the study area is within the boundary of Lake County, Tennessee. 

The primary field plot used for this study will be referred to as ShopSuper, which 

encompasses 293.6 total acres of arable land. Corn, soybeans, and wheat are the primary 

rotational field crops planted on this field plot with annual soil samples taken for 

chemical analysis. Out of the potential field plots that could be used as the basis for this 

study, this plot was the largest in terms of acreage and had recent crop yield data.  

3.1.1 Data Collection 

The crop yield data used for this study were collected using RTK precision 

agricultural practices. These shapefiles were continuously uploaded to the Greenstar 2 

controller module used for this process and were then formatted after for the purpose of 

this study. Each of the shapefiles were projected using the Universal Transverse Mercator 

(UTM) Zone 16 North projection. These shapefiles encompass the entire field and are 

comprised of yield cells which are roughly the width of the harvester being used. The 

RTK process of crop harvesting resulted in yield cell shape files that have an attributed 

soil moisture content for each cell. These soil moisture values are collected using in situ 

measurements recorded during the harvesting process by the sensor mounted on the 

harvester. The elevation of each of the yield cells is averaged concurrently during this 



www.manaraa.com

 

11 

process which results in an elevation value assigned to each of the cells. The RTK 

elevation values produced during harvesting were used for this study as opposed to DEM 

layers due to the accuracy associated with the RTK values. Due to the high number of the 

sample points and the constant GPS receiver correction, the elevation error for the entire 

field would be negligible (Schmidt 2003). Using the RTK data to produce continuous 

elevation values for the target field allowed for inclusion as a variable being used for this 

study. The large number of cells present within the yield shapefiles warranted clipping by 

the soil sample points file. This clipping process resulted in a joined file with both yield 

values and soil sample information for each of the samples. While this is not a full 

representation of the fluid yield values over the entire field plot, it was an effective way 

to make sure soil properties were not assumed for larger polygon sections. 
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Figure 3.1 Soil Sample Point Layer of Target Field 

 

3.1.2 Soil Composition 

The soil samples for this study were collected in October of 2014. There are 113 

soil sample points for the soil sample shapefile which was chemically analyzed by a 

private agricultural laboratory. The attributes of the soil samples include the CEC, CEC 

base percentages (Hydrogen, Potassium, Calcium, and Magnesium), CaMgR, Calcium 

level, Magnesium level, and several other mineral contents. Latitude and longitude of 

each of the samples were recorded during the collection process and were later projected 

to Universal Transverse Mercator (UTM) Zone 16 North. The soil map for this field plot 
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(NRCS 2014) establishes numerous soil types present within the study area. The majority 

of the soils are silt-base, loam, or clay soils in composition. These types of soils have 

been shown to correlate with CEC and in some cases improved crop production (Sudduth 

2005). 

 

Figure 3.2 Soil Identification Map of Target Field 
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3.2 Point Pattern and Clustering 

3.2.1 Multi-Distance Spatial Cluster Analysis 

The initial analysis will be to determine the orientation of the variables in 

relationship to one another over the area of the entire field. By using a Multi-Distance 

Spatial Cluster Analysis (Ripley’s K) function the clustering or dispersion of the 

variables can be established. The formula is able to be weighted proportional to the 

distance between point features: 

  (3.1) 

The formula is designed to compare the spatial point values with a complete spatial 

randomness model using an index of dispersion (Pfeiffer 1996). This is to define whether 

the spatial orientation of the points impacts the values and to what degree the points 

display spatial autocorrelation. Expected point values are created using this formula and 

then compared to the actual values to show the level of clustering or dispersion present 

within the data.  Since these soil sample points are fixed with predefined distances, this is 

measuring the extent of the dispersion for the variable values present for the points. 

3.2.2 Spatial Autocorrelation 

The variables chosen for this study will be analyzed individually using both the 

spatial location and the existing values using a spatial autocorrelation method (Global 

Moran’s I). The principle design of this inferential statistic method measures the result of 

the analysis in terms of the null hypothesis. The null hypothesis states that the variable 

values are present randomly within the study area, with the probability score and Z-score 
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being used to determine whether to accept or decline the null hypothesis. If the analysis 

shows that the probability score is not significant, the null hypothesis must be accepted. 

A significant probability score can infer that the spatial orientation of the data is clustered 

if the Z-score is positive, and if the Z-score is negative the data is spatially dispersed. 

This form of analysis has multiple distance options to ensure that the distances between 

neighboring points is uniform and does not influence the results. For the data used in this 

study, the point distances are uniform so there is no need to determine a distance 

modifier. Unlike the Ripley’s K analysis, this analysis will have to be performed 

individually for each of the variables being studied. The spatial autocorrelation of the 

variables will aid in designing regression models by identifying patterns of dispersion 

within the data that could be too strongly related and warrant multicollinearity. 

3.2.3 Cluster and Outlier Analysis 

The cluster and outlier analysis (Anselin Local Moran’s I) will result in the 

creation of a new layer to be used within the GIS. Continuing the idea of spatial 

clustering introduced during the Global Moran’s I analysis, this layer will show where 

clusters are spatially located within the data and whether the clustered values are low or 

high. This function uses a standard statistical confidence level of 0.05 for determining 

whether values are clustered high, clustered low, or surrounded by values that indicate an 

outlier. This high and low clustered value identification will be especially useful when 

determining the spatial orientation and relationships of the soil variables. 
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3.2.4 Hot Spot Analysis 

Each of the primary target variables was processed using the Getis-Ord Gi* 

technique of hot spot analysis. Hot spot analysis will be used to measure each of the 

variables to identify where there are large quantities of high values and large quantities of 

low values. This will allow each of the variables to be compared to find correlations in 

terms of the hot spot groupings and the low value groupings. The point layers used for 

input will need to use a fixed distance band with Euclidean distance between the points to 

identify these hot spots. This hot spot identification will also be used to verify the 

clustering results of the Anselin Local Moran’s I toolset. Determining the clusters of the 

variable values within the spatial boundary of the field will be useful when paired with 

the results of the exploratory regression for deciding which variables to use for the 

finalized regression models. 

3.2.5 Grouping Analysis 

The hot spots determined using the Getis-Ord Gi* method above will then be 

grouped using the grouping analysis toolset. The first group of correlated hot spots will 

be physical variables (moisture, elevation) compared to the yield. The second grouping 

will be of the chemical properties of the soil (CEC, CaMgR) compared to the yield. A 

final grouping will then be created comparing all of the variables to the yield and all three 

will be mapped in order to identify trends within the groups. Each of these groups will 

need to use Delaunay triangulation in order to be spatially grouped, and can then be 

analyzed to determine the R-squared value of group parsimony. The measure of fit for the 

gorupings can then be used to decide which variables exhibit like values and are 

potentially correlated for use in the regression model design process. 
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3.3 Regression Techniques 

3.3.1 Exploratory Regression 

This study has numerous variables with complex relationships which could make 

the regression process more difficult to design. The CEC values of the field overall are 

comprised of individual base percentages of Hydrogen, Potassium, Calcium, and 

Magnesium. As these base percentages are being weighed as variables and spatially 

modeled using the techniques previously listed, they are still necessary for this analysis, 

but exploratory regression is needed to determine proper usage. If the CEC is used as the 

dependent variable and those base percentages are set as explanatory variables the 

regression design will be fatally flawed due to multicollinearity.  

The exploratory regression process within the GIS is scripted to evaluate every 

possible combination of variables and designate which combinations meet the criteria 

assigned by the design of the study. Each of the candidate explanatory variables is 

assessed using specified thresholds for model fit and each of the combinations return a 

score in terms of those criteria. While this is a useful tool in designing the final regression 

model, there is potential for this approach to influence the variable selection process to 

include only variables that contribute to a successful model. Bearing this problem in mind 

and understanding the nutrient processes of the soil characteristics will minimize the 

potential framing effects of this tool. The regression design of this study will use this tool 

solely to reduce unnecessary multicollinearity within the final regression model. 

3.3.2 Geographically Weighted Regression 

The Geographically Weighted Regression (GWR) method will be used as the 

primary regression modeling process for this study. Using the results of the pattern and 
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cluster analyses listed above (Ripley’s K, Global Moran’s I, and Anselin Local Moran’s 

I) the spatial distribution of the target variables will be used to determine the input for 

this regression. The exploratory regression technique using primarily OLS will be used to 

reduce the overall multicollinearity present within the model.  

Typical linear regression utilizes paired values for independent variables in order 

to estimate the corresponding value of the dependent variable. With the addition of 

spatial orientation for botht eh dependent and independent variables, the spatial locations 

are added to this regression function. The formula for GWR is: 

  (3.2) 

In this formula, ‘y’ would be the dependent variable with the subsequent ‘x’ variables 

being the independent variables and ‘u’ serving as spatial locations (Charlton 2009). This 

form of regression is based on dependent variable values being estimated at each of the 

spatial locations in terms of the relationship with the independent variables and the 

respective values at those points. There are multiple weighting methods that can be used 

for this function, but because the soil sample layers are so uniformly spaced, this study 

will use a fixed kernel with the bandwidth established using the Akaike Information 

Criterion method. 
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RESULTS 

4.1 Spatial Distribution 

The Ripley’s K function used to measure the multi-distance spatial orientation of 

the study variables shows that the data is more dispersed than clustered. All of the 

variables were included for this K function in order to determine the spatial orientation 

for the data as a whole. Each of the feature values are assigned an expected K value 

representing a random distribution, which are then compared to the observed K values. 

Due to largely negative differential between expected and observed K values, the trend of 

the data is dispersed instead of clustered.  

 

Figure 4.1 Ripley’s K Function Results for All Variables 
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The trend of dispersion is observable for both CEC and yield using spatial 

autocorrelation methods. The Global Moran’s I function provides Z-Scores for both CEC 

and yield that are not significantly different than randomly dispersed. The soil moisture 

variable orientation was significant within a 0.05 confidence interval due to the clustering 

of the variables. The elevation and CaMgR were significant to the extent that the 

clustered pattern of both variables had less than a 1% chance of being randomly 

clustered. The variable clustering of the CaMgR would mean that within the study area, 

the CaMgR values display a degree of spatial autocorrelation. The elevation variable is 

more so expected because of the inherent flatness of field plots, which normally have a 

gradual slope over the course of the entire plot. 

Table 4.1 Global Moran’s I Values 

 CEC CaMgR Moisture Elevation Yield 
Moran's 
Index: 

0.264587 0.640665 0.447368 0.626295 0.067119 

Expected 
Index: 

-0.009091 -0.009091 -0.009091 -0.009091 -0.009091 

Variance: 0.049440 0.049248 0.049273 0.048527 0.048729 
z-score: 1.230835 2.927896 2.056356 2.884334 0.345234 
p-value: 0.218385 0.003413 0.039748 0.003922 0.729919 

 
 

Local cluster and outlier analysis was performed for the soil properties of CEC 

and CaMgR. The Global Moran’s I results show that the CaMgR is clustered as opposed 

to dispersed and that CEC is randomly distributed for the study plot. Using a more 

localized for of cluster analysis the CEC has observable clustering of both low values and 

high values in the plot. This clustering of values is likely due in large part to the different 
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soil types present within the field plot, soil moisture properties, and the gradual sloping 

elevation of the surface. 

 

Figure 4.2 Anselin Local Moran’s I Results for Cation Exchange Capacity and 
Calcium-Magnesium Ratio 

 

The clustering present within the local Moran’s I results addressed in greater detail using 

the Getis-Ord Gi* function. The results of this function creates a simple Thiessen 

polygon created for each soil sample point with an assigned Z-score. Each of the Z-scores 

correlate to clustered values, with negative scores associated to clustered low values and 

high scores assigned to clustered high values. The class breaks of each variable clustering 
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layer have been modified so that the highest quantity of positive groupings are 

representative of Z-scores that range above 1.97. Likewise, the negative Z-scores 

expressed through class breaks are representative of scores lower than -1.97. The values 

of both 1.97 and -1.97 are used to denote a confidence level greater than 0.95 for the 

clustering of these values.  

Each of the variable clustering results are mapped and can be compared to 

determine which hot spots could be the result of correlation between variables. Mapping 

the clusters can also aid in initial visual determination of spatial dependency which aids 

in identifying areas of interest for use in the regression modeling. The hot spot clustering 

of the yield variable produces no positive groupings of high values above a 0.95 

confidence level and only one polygon located in the southeast corner that exhibits a 

clustering of low values above a 0.96 confidence level. 

 

 

Figure 4.3 Getis-Ord Gi* Clustering Results for Elevation Variable 
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Figure 4.4 Getis-Ord Gi* Clustering Results for Calcium-Magnesium Ratio Variable 

 

 

 

Figure 4.5 Getis Ord Gi* Clustering Result for Cation Exchange Capacity 
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Figure 4.6 Getis-Ord Gi* Clustering Result for Soil Moisture Variable 

 

 

 

Figure 4.7 Getis-Ord Gi* Clustering Result for Yield Variable 

 

The results of the hotspot analysis were then compared to the results of the 

grouping analysis performed. The first grouping of variables includes soil moisture, 
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elevation, and the yield which make up the physical properties of the soil. Soil moisture 

in conjunction with elevation can be used to identify potential leaching of soil nutrients 

due to transportation by moisture present within the soil. The second grouping of 

variables includes the CaMgR, CEC, and yield which is representative of the chemical 

properties of the soil samples. The final grouping is an overall grouping containing the 

variables from both the physical and chemical groupings. 

 

Figure 4.8 Grouping Analysis Result for Physical Properties 
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Figure 4.9 Grouping Analysis Result for Chemical Properties 

 

 

Figure 4.10 Grouping Analysis Result for Overall Soil Properties 
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The physical and chemical groupings both used three classes to identify groups 

where all of the variable values were the most similar while maintaining the largest 

amount of difference from the additional groups. The overall soil properties grouping was 

created with the same method but five classes were used to create a more meaningful set 

of groups. The physical and chemical groupings both display a primary group which 

encompasses the majority of the target area, and additional smaller groups at the top and 

bottom of the target area. This same trend is observable for the overall soil properties 

grouping, with the exception of an additional group present in the central area. These 

groupings within the data link hot spots and clusters for individual variables with 

additional similar variable values to show which spatial areas within the target location 

are related. This does not necessarily identify relationships between specific variables, 

but instead determines the spatial location of similar variable values. 

4.2 Regression Modeling 

The GIS exploratory regression toolset compares multiple models using assigned 

dependent and independent variables. Each model was scored for the purposes of 

reducing multicollinearity and improving performance of the chosen regression model 

techniques. By allowing the models to be scored, potential models with overlapping 

variables could be paired out of the design for the finalized model. As mentioned earlier 

in this study, there have been scientific objections to using exploratory regression in lieu 

of initial hypotheses and the idea of potentially framing the study. Many of these 

variables are dependent upon multiple factors and the risk of fatal model design due to 

multicollinearity is accordingly high. Another potential problem with OLS regression 

compared to the GWR method is the idea of spatial dependency and heterogeneity within 
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the data. The OLS regression would have to be modified in order to deal with the 

differential values of the variables over spatial distances. 

Table 4.2 Cation Exchange Capacity Independent Variable Summary of Variable 
Significance 

Summary of Variable Significance 
Variable Significant Negative Positive 
Ca 100.00 0.00 100.00 
Mg 100.00 0.00 100.00 
Moist 62.50 100.00 0.00 
CaMgR 50.00 25.00 75.00 
Elev 37.50 43.75 56.25 

 

Table 4.3 Cation Exchange Capacity Independent Variable Summary of 
Multicollinearity 

Summary of Multicollinearity 
Variable VIF Violations Covariates 
Elev 1.13 0 - 
Moist 1.13 0 - 
Ca 5.87 0 - 
CaMgR 1.35 0 - 
Mg 5.99 0 - 
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Table 4.4 Calcium-Magnesium Ratio Independent Variable Summary of Variable 
Significance 

Summary of Variable Significance 
Variable Significant Negative Positive 
Moist 81.25 100.00 0.00 
Mg 75.00 100.00 0.00 
Ca 56.25 0.00 100.00 
CEC 50.00 25.00 75.00 
Elev 0.00 0.00 100.00 

 

Table 4.5 Calcium-Magnesium Ratio Independent Variable Summary of 
Multicollinearity 

Summary of Multicollinearity 
Variable VIF Violations Covariates 
Elev 1.16 0 - 
Moist 1.21 0 - 
Ca 26.70 8 CEC (88.89) 

CEC 45.02 10 Ca (88.89) 

Mg 9.46 6 CEC (55.56) 

 

Table 4.6 Yield Independent Variable Summary of Variable Significance 

Summary of Variable Significance 
Variable Significant Negative Positive 
Moist 100.00 0.00 100.00 
CEC 87.10 100.00 0.00 
Ca 48.39 38.71 61.29 
Mg 12.90 51.61 48.39 
Elev 0.00 35.48 64.52 
CaMgR 0.00 51.61 48.39 
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Table 4.7 Yield Independent Variable Summary of Multicollinearity 

Summary of Multicollinearity 
Variable VIF Violations Covariates 
Elev 1.16 0 - 
Moist 1.24 0 - 
Ca 27.38 15 CEC (93.75) 

CaMgR 1.35 0 - 
CEC 45.02 21 Ca (93.75) 

Mg 10.02 13 CEC (75.00) 

 

The tables produced through using the exploratory regression present variables 

that have a large amount of multicollinearity. For the CEC GWR model, the variables of 

free Ca, free Mg, and soil moisture have the highest significance resulting from the 

multiple OLS regression attempts that are performed by this function. There are also no 

multicollinear variables which would present redundant information. The CaMgR GWR 

model exhibits a lower significance but still identifies the free Ca, free Mg, and soil 

moisture variables that were chosen for the CEC GWR model. The multicollinearity 

testing flagged the variable CEC from being too similar to both free Ca and Mg. The final 

exploratory regression is for the yield GWR model, and OLS determined significance 

estimation is not necessary as both soil properties are going to be used in this model, and 

only the multicollinearity between those two variables necessitated the function. 

After reducing the redundant variables from the final model design, the GWR 

variables were finalized. The GWR model featuring CEC as the dependent variable with 

free Ca, free Mg, and soil moisture as the explanatory variables. The GWR model for the 

CaMgR uses the CaMgR as the dependent variable with the same design of free Ca, free 
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Mg, and soil moisture as the independent variables. For both of the GWR models, the 

kernel is set as fixed due to the Gaussian fixed distance kernel being the typical choice 

for normally distributed data. The bandwidth for both of the models is set to be 

determined using the Akaike information criterion. The results of the GWR model are 

displayed using Voronoi polygons because the initial yield cell polygons clipped for each 

soil sample were not able to be differentiated using a graduated color scheme due to size. 

The yield cell layer was clipped by the soil sample points in order to reduce the amount 

of data that was not truly representative of the soil properties and values that it was linked 

to. The result of that clipping process resulted in small polgyons with large distances 

between. The process of mapping simple Voronoi polygons uses the value of each 

individual soil sample to create a single polygon for each of the soil samples that 

encompasses the space between the nearest neighboring point and respective polygon. 

 

Figure 4.11 Soil Moisture Coefficient Variation from Cation Exchange Capacity 
Geographically Weighted Regression 
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Figure 4.12 Magnesium Coefficient Variation from Cation Exchange Capacity 
Geographically Weighted Regression 

 

 

Figure 4.13 Calcium Coefficient Variation from Cation Exchange Capacity 
Geographically Weighted Regression 
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The model for CEC resulted in a local R-squared value of 0.98 and an adjusted R-

squared value of 0.979. The Ca, Mg, and soil moisture variable parameters are mapped 

using the difference between the GWR estimated values and the observed values for 

those variables. Both Ca and Mg are positive with relatively low difference between the 

observed values and predicted values. The spatial orientation of both soil moisture and 

Mg are relatively linear across the plot from the northern edge to the southern edge. The 

soil moisture variable is negative but the differential is still very miniscule considering 

the overall fit of the model. The positive Ca and Mg variable residuals have a small range 

of variation which are both oriented in different linear directions. Using explanations of 

the soil properties and characteristics, the soil type and elevation changes across the field 

plot could account for these changes in free Ca and Mg. CEC is comprised of soil mineral 

base percentages meaning that the free Ca and Mg would not be included in the base 

percentages of Ca and Mg that make up the CEC. The fluctuations of the freely available 

Ca and Mg in the field would be separate from those that determine the CEC.  

The CEC is a measure of the ability of the soil to maintain nutrients and varies by 

soil type, composition, and moisture. Variable soil moisture could be causing nutrient 

leaching within the soil and transportation of salt causing lower soil electrical 

conductivity values. The high correlation between the free Ca and Mg in the soil and the 

CEC values could be a measure of the impact of this leaching observable in the values of 

those free nutrients. It is also of note that the amounts of free Ca and Mg in the soil have 

been previously found to be not spatially dependent which implicates soil processes 

(Cambardella 1994). Leaching of the free Ca and Mg could be directly reflected by the 
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CEC variable values which would link those values not to the composition of the soil 

CEC but how soil properties are acting upon the CEC as a soil process. 

 

Figure 4.14 Soil Moisture Coefficient Variation from Calcium-Magnesium Ratio 
Geographically Weighted Regression 
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Figure 4.15 Magnesium Coefficient Variation from Calcium-Magnesium Ratio 
Geographically Weighted Regression 

 

 

Figure 4.16 Calcium Coefficient Variation from Calcium-Magnesium Ratio 
Geographically Weighted Regression 
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The model for the CaMgR had a significantly lower R-squared value of 0.257 and an 

adjusted R-squared of 0.236. The Ca and Mg variables directly determine the CaMgR as 

it is a ratio of the two, but the multicollinearity observable in the initial design of the 

regression model linked free Ca and Mg to the CEC. There was a strong observable 

multicollinearity between the CEC and the free Ca and Mg variable values. This extent of 

similarity dictated that the CEC be excluded from the analysis in lieu of the free Ca and 

Mg. The CEC was also excluded because the inclusion of all three variables would have 

fatally flawed the analysis due to high levels of correlation between independent 

variables. 

There is a very low amount of the data explained using this design, roughly only 

23.6% using the R-squared value as a measure of model parsimony. The CaMgR is the 

ratio of free Ca and Mg in the soil which could point to a multicollinear model design 

flaw, but the free amounts should instead explain the spatial variation of CaMgR as a 

dependent variable. The soil moisture has a higher correlation than that of both the free 

Ca and Mg in the initial OLS exploratory regression models which would indicate that 

the CaMgR is impacted by underlying soil processes. Soil moisture could potentially be 

leaching free minerals and nutrients in the soil to areas with increased run off, but the 

elevation values for the soil were not correlated to a high extent. 

The final GWR model created in this study uses the yield variable as the 

dependent variable with CEC and CaMgR set as the independent variables. This model 

has an adjusted R-squared value of 0.194 which means that there was very low model 

performance in determining the changes in yield relative to changes in the values for 

CEC and CaMgR. This model fit outcome was expected after the initial OLS exploratory 
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regression variable correlations. The importance of this regression model is that the low 

parsimony directly points to underlying soil processes that effect the yield in terms of 

both the CEC and CaMgR values. 

 

Figure 4.17 Calcium-Magnesium Ratio Coefficient Variation from Yield 
Geographically Weighted Regression 
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Figure 4.18 Cation Exchange Capacity Coefficient Variation from Yield 
Geographically Weighted Regression 

 

 

Figure 4.19 Local R² of Yield Geographically Weighted Regression 
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Figure 4.20 Standard Residual of Yield GWR 

 

The hot spot analysis results can be used as a reference when looking at the local 

R-squared results of the yield GWR model. The highest localized measure of model fit 

was present where there is both low soil moisture and low elevation for the target area in 

the northwest corner. The large coefficient standard errors for both the CaMgR and the 

CEC pose the question of localized collinearity and to what extent that affects this 

regression model. Both explanatory variables exhibit a very high coefficient standard 

error in the northwest corner where the localized R-squared is between 0.41 and 0.44. 

This area presents the highest measure of model fit with one of the largest amounts of 

coefficient standard error. 
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DISCUSSION 

The GWR results correlate the CEC with both the Ca and Mg values present in 

the soil samples for the study area. The CEC is comprised of base percentages of H, P, 

Ca, and Mg so the correlation is logical. Soil sample values for the base percentages of 

Ca and Mg are different from the amounts of those present in the soil individually. 

Another contributing variable to the CEC that was identified in the model design process 

using exploratory regression is the soil moisture. The properties of the soil nutrients to 

leech and transport to different areas based on soil moisture and varying elevation over 

the field surface could pair with the soil moisture values present in the soil samples. The 

trend of the GWR results being oriented from the Northern section of the field to the 

Southern section could be in part due to lower elevation values present at the Northern 

most sections of the field. This could explain the CEC values of the field being affected 

by the soil moisture because of nutrients being able to be more easily transported through 

soils experiencing a lower sloping observable elevation. 

The CaMgR is a direct reflection of the ratio between the free Ca and Mg values 

present within the soil. This is problematic in terms of the low correlation between Ca 

and Mg as explanatory variables for the CaMgR in the GWR function. A potential 

explanation for this is the multicollinearity that had to be addressed during the design 

process of the model and determining which variables were necessary for inclusion. The 
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Ca and Mg variables conflict with CEC to the point of fatally flawing the GWR model. 

Since CEC is a measure of the ability of the soil to maintain nutrients, the 

multicollinearity of the variables could be skewing the regression model for this 

particular dependent variable.  

The relationship between the soil sample values for free Ca, free Mg, soil 

moisture, and the CEC can be used to determine how the optimal individual levels of Ca 

and Mg affect the CEC. Optimal soil levels of Ca and Mg have previously been defined 

in terms of value ranges which can then be used to determine what impact those 

particular ranges have on the CEC over an entire field plot. Maximizing the ability of 

field soils to maintain nutrients in terms of the CEC could increase yield at a field plot 

level. This optimization would necessitate precision agricultural practices to address 

individual soil variables to a greater degree than currently in place. 

The final GWR model using yield as a dependent variable maintained a poor 

measure of model fit. Changes in the yield are to a large degree not dependent on the 

CEC and CaMgR. This result shows that there are underlying soil processes or potentially 

plant dependent processes that impact the yield or the CEC and CaMgR. There are 

limitations for his study and uncovering complex underlying soil processes was 

anticipated from the beginning. There is also a limitation of the study due to the lack of 

soil samples from more than one date over the course of the growing season. 

Precipitation over the entire growing season would also have eliminated potential 

skewing of the results due to a single soil moisture reading taken at the time of harvest. 

There is further research required to determine what impact underlying soil processes 
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such as leaching, temporal changes in the soil composition, and varying amounts of 

precipitation. 

The findings of these models can be used as a starting point for future research 

towards providing optimized levels for these soil properties. The limitations of this study 

necessitate further research with numerous sampling dates throughout the growing season 

and additional knowledge of chemical applications to the soil. In terms of the findings of 

this study, the correlation between the CEC and freely available Ca and Mg in the soil is 

useable to provide insight for precision agricultural management decisions. As the CEC 

is a measure of the soil’s ability to maintain nutrients (Corwin 2005), the relationship 

between changes in the CEC and changes in the values for soil moisture, Ca, and Mg is a 

reflection of nutrient availability. This correlation between the CEC and the explanatory 

variables could provide a much more accurate assessment of the nutrient availability of 

the soil during the growing season.  
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CONCLUSION 

This study seeks to identify the relationship between multiple field soil properties 

and increase knowledge of how they are correlated. The methods used to accomplish this 

involved first performing a multi-distance spatial cluster analysis to determine the 

dispersion of the variables present within the soil samples. In order to determine the 

degree to which each of the individual variables followed the overall trend of dispersion a 

spatial autocorrelation analysis was necessary. After the spatial orientation of the variable 

values was defined in terms of spatial autocorrelation, a local cluster and outlier analysis 

was used to readdress the clustering present in each of the variables. This is necessary 

because the initial Ripley’s K function was used to display clustering over the entire set 

of data values for each variable at once, whereas the local cluster and outlier analysis was 

used for individual variables.  

These variables were then processed using an ordinary least-squares based 

exploratory regression tool. This tool ran specified independent variables through 

regression functions in order to determine which of those variables expressed fatal 

amounts of multicollinearity. After the explanatory variables were decided for both the 

CEC and CaMgR regression models were defined, the selected model parameters were 

modeled using the GWR model. Correlation between the variables was then defined 

using determinants of model fit such as the adjusted R-squared values.  
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The GWR model for CEC maintained an adjusted R-squared of 0.979 while the 

CaMgR model exhibited an adjusted R-squared value of 0.236. The CEC model 

performed to a much more successful degree than that of the CaMgR model. The 

correlation between CEC and the specified explanatory variables could be used to 

optimize the amounts of the explanatory variables present in field soils. With these 

amounts optimized, the CEC could then be adjusted to increase the amounts of nutrients 

that the soil is able to maintain, which could in turn lead to increased yield. The CaMgR 

model requires further study as there could be additional independent variables necessary. 
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